3.74 \(\int (e x)^{-1+3 n} (a+b \text{csch}(c+d x^n)) \, dx\)

Optimal. Leaf size=197 \[ \frac{2 b x^{-3 n} (e x)^{3 n} \text{PolyLog}\left (3,-e^{c+d x^n}\right )}{d^3 e n}-\frac{2 b x^{-3 n} (e x)^{3 n} \text{PolyLog}\left (3,e^{c+d x^n}\right )}{d^3 e n}-\frac{2 b x^{-2 n} (e x)^{3 n} \text{PolyLog}\left (2,-e^{c+d x^n}\right )}{d^2 e n}+\frac{2 b x^{-2 n} (e x)^{3 n} \text{PolyLog}\left (2,e^{c+d x^n}\right )}{d^2 e n}+\frac{a (e x)^{3 n}}{3 e n}-\frac{2 b x^{-n} (e x)^{3 n} \tanh ^{-1}\left (e^{c+d x^n}\right )}{d e n} \]

[Out]

(a*(e*x)^(3*n))/(3*e*n) - (2*b*(e*x)^(3*n)*ArcTanh[E^(c + d*x^n)])/(d*e*n*x^n) - (2*b*(e*x)^(3*n)*PolyLog[2, -
E^(c + d*x^n)])/(d^2*e*n*x^(2*n)) + (2*b*(e*x)^(3*n)*PolyLog[2, E^(c + d*x^n)])/(d^2*e*n*x^(2*n)) + (2*b*(e*x)
^(3*n)*PolyLog[3, -E^(c + d*x^n)])/(d^3*e*n*x^(3*n)) - (2*b*(e*x)^(3*n)*PolyLog[3, E^(c + d*x^n)])/(d^3*e*n*x^
(3*n))

________________________________________________________________________________________

Rubi [A]  time = 0.174529, antiderivative size = 197, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 7, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.318, Rules used = {14, 5441, 5437, 4182, 2531, 2282, 6589} \[ \frac{2 b x^{-3 n} (e x)^{3 n} \text{PolyLog}\left (3,-e^{c+d x^n}\right )}{d^3 e n}-\frac{2 b x^{-3 n} (e x)^{3 n} \text{PolyLog}\left (3,e^{c+d x^n}\right )}{d^3 e n}-\frac{2 b x^{-2 n} (e x)^{3 n} \text{PolyLog}\left (2,-e^{c+d x^n}\right )}{d^2 e n}+\frac{2 b x^{-2 n} (e x)^{3 n} \text{PolyLog}\left (2,e^{c+d x^n}\right )}{d^2 e n}+\frac{a (e x)^{3 n}}{3 e n}-\frac{2 b x^{-n} (e x)^{3 n} \tanh ^{-1}\left (e^{c+d x^n}\right )}{d e n} \]

Antiderivative was successfully verified.

[In]

Int[(e*x)^(-1 + 3*n)*(a + b*Csch[c + d*x^n]),x]

[Out]

(a*(e*x)^(3*n))/(3*e*n) - (2*b*(e*x)^(3*n)*ArcTanh[E^(c + d*x^n)])/(d*e*n*x^n) - (2*b*(e*x)^(3*n)*PolyLog[2, -
E^(c + d*x^n)])/(d^2*e*n*x^(2*n)) + (2*b*(e*x)^(3*n)*PolyLog[2, E^(c + d*x^n)])/(d^2*e*n*x^(2*n)) + (2*b*(e*x)
^(3*n)*PolyLog[3, -E^(c + d*x^n)])/(d^3*e*n*x^(3*n)) - (2*b*(e*x)^(3*n)*PolyLog[3, E^(c + d*x^n)])/(d^3*e*n*x^
(3*n))

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 5441

Int[((a_.) + Csch[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*((e_)*(x_))^(m_.), x_Symbol] :> Dist[(e^IntPart[m]*(e*
x)^FracPart[m])/x^FracPart[m], Int[x^m*(a + b*Csch[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]

Rule 5437

Int[((a_.) + Csch[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simpli
fy[(m + 1)/n] - 1)*(a + b*Csch[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplif
y[(m + 1)/n], 0] && IntegerQ[p]

Rule 4182

Int[csc[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c + d*x)^m*Ar
cTanh[E^(-(I*e) + f*fz*x)])/(f*fz*I), x] + (-Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 - E^(-(I*e) + f*
fz*x)], x], x] + Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 + E^(-(I*e) + f*fz*x)], x], x]) /; FreeQ[{c,
 d, e, f, fz}, x] && IGtQ[m, 0]

Rule 2531

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> -Simp[((
f + g*x)^m*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)])/(b*c*n*Log[F]), x] + Dist[(g*m)/(b*c*n*Log[F]), Int[(f + g*x)
^(m - 1)*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 6589

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rubi steps

\begin{align*} \int (e x)^{-1+3 n} \left (a+b \text{csch}\left (c+d x^n\right )\right ) \, dx &=\int \left (a (e x)^{-1+3 n}+b (e x)^{-1+3 n} \text{csch}\left (c+d x^n\right )\right ) \, dx\\ &=\frac{a (e x)^{3 n}}{3 e n}+b \int (e x)^{-1+3 n} \text{csch}\left (c+d x^n\right ) \, dx\\ &=\frac{a (e x)^{3 n}}{3 e n}+\frac{\left (b x^{-3 n} (e x)^{3 n}\right ) \int x^{-1+3 n} \text{csch}\left (c+d x^n\right ) \, dx}{e}\\ &=\frac{a (e x)^{3 n}}{3 e n}+\frac{\left (b x^{-3 n} (e x)^{3 n}\right ) \operatorname{Subst}\left (\int x^2 \text{csch}(c+d x) \, dx,x,x^n\right )}{e n}\\ &=\frac{a (e x)^{3 n}}{3 e n}-\frac{2 b x^{-n} (e x)^{3 n} \tanh ^{-1}\left (e^{c+d x^n}\right )}{d e n}-\frac{\left (2 b x^{-3 n} (e x)^{3 n}\right ) \operatorname{Subst}\left (\int x \log \left (1-e^{c+d x}\right ) \, dx,x,x^n\right )}{d e n}+\frac{\left (2 b x^{-3 n} (e x)^{3 n}\right ) \operatorname{Subst}\left (\int x \log \left (1+e^{c+d x}\right ) \, dx,x,x^n\right )}{d e n}\\ &=\frac{a (e x)^{3 n}}{3 e n}-\frac{2 b x^{-n} (e x)^{3 n} \tanh ^{-1}\left (e^{c+d x^n}\right )}{d e n}-\frac{2 b x^{-2 n} (e x)^{3 n} \text{Li}_2\left (-e^{c+d x^n}\right )}{d^2 e n}+\frac{2 b x^{-2 n} (e x)^{3 n} \text{Li}_2\left (e^{c+d x^n}\right )}{d^2 e n}+\frac{\left (2 b x^{-3 n} (e x)^{3 n}\right ) \operatorname{Subst}\left (\int \text{Li}_2\left (-e^{c+d x}\right ) \, dx,x,x^n\right )}{d^2 e n}-\frac{\left (2 b x^{-3 n} (e x)^{3 n}\right ) \operatorname{Subst}\left (\int \text{Li}_2\left (e^{c+d x}\right ) \, dx,x,x^n\right )}{d^2 e n}\\ &=\frac{a (e x)^{3 n}}{3 e n}-\frac{2 b x^{-n} (e x)^{3 n} \tanh ^{-1}\left (e^{c+d x^n}\right )}{d e n}-\frac{2 b x^{-2 n} (e x)^{3 n} \text{Li}_2\left (-e^{c+d x^n}\right )}{d^2 e n}+\frac{2 b x^{-2 n} (e x)^{3 n} \text{Li}_2\left (e^{c+d x^n}\right )}{d^2 e n}+\frac{\left (2 b x^{-3 n} (e x)^{3 n}\right ) \operatorname{Subst}\left (\int \frac{\text{Li}_2(-x)}{x} \, dx,x,e^{c+d x^n}\right )}{d^3 e n}-\frac{\left (2 b x^{-3 n} (e x)^{3 n}\right ) \operatorname{Subst}\left (\int \frac{\text{Li}_2(x)}{x} \, dx,x,e^{c+d x^n}\right )}{d^3 e n}\\ &=\frac{a (e x)^{3 n}}{3 e n}-\frac{2 b x^{-n} (e x)^{3 n} \tanh ^{-1}\left (e^{c+d x^n}\right )}{d e n}-\frac{2 b x^{-2 n} (e x)^{3 n} \text{Li}_2\left (-e^{c+d x^n}\right )}{d^2 e n}+\frac{2 b x^{-2 n} (e x)^{3 n} \text{Li}_2\left (e^{c+d x^n}\right )}{d^2 e n}+\frac{2 b x^{-3 n} (e x)^{3 n} \text{Li}_3\left (-e^{c+d x^n}\right )}{d^3 e n}-\frac{2 b x^{-3 n} (e x)^{3 n} \text{Li}_3\left (e^{c+d x^n}\right )}{d^3 e n}\\ \end{align*}

Mathematica [F]  time = 27.4874, size = 0, normalized size = 0. \[ \int (e x)^{-1+3 n} \left (a+b \text{csch}\left (c+d x^n\right )\right ) \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[(e*x)^(-1 + 3*n)*(a + b*Csch[c + d*x^n]),x]

[Out]

Integrate[(e*x)^(-1 + 3*n)*(a + b*Csch[c + d*x^n]), x]

________________________________________________________________________________________

Maple [F]  time = 0.264, size = 0, normalized size = 0. \begin{align*} \int \left ( ex \right ) ^{-1+3\,n} \left ( a+b{\rm csch} \left (c+d{x}^{n}\right ) \right ) \, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x)^(-1+3*n)*(a+b*csch(c+d*x^n)),x)

[Out]

int((e*x)^(-1+3*n)*(a+b*csch(c+d*x^n)),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(-1+3*n)*(a+b*csch(c+d*x^n)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [C]  time = 2.14392, size = 3085, normalized size = 15.66 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(-1+3*n)*(a+b*csch(c+d*x^n)),x, algorithm="fricas")

[Out]

1/3*(a*d^3*cosh((3*n - 1)*log(e))*cosh(n*log(x))^3 + a*d^3*cosh(n*log(x))^3*sinh((3*n - 1)*log(e)) + (a*d^3*co
sh((3*n - 1)*log(e)) + a*d^3*sinh((3*n - 1)*log(e)))*sinh(n*log(x))^3 + 3*(a*d^3*cosh((3*n - 1)*log(e))*cosh(n
*log(x)) + a*d^3*cosh(n*log(x))*sinh((3*n - 1)*log(e)))*sinh(n*log(x))^2 + 6*(b*d*cosh((3*n - 1)*log(e))*cosh(
n*log(x)) + b*d*cosh(n*log(x))*sinh((3*n - 1)*log(e)) + (b*d*cosh((3*n - 1)*log(e)) + b*d*sinh((3*n - 1)*log(e
)))*sinh(n*log(x)))*dilog(cosh(d*cosh(n*log(x)) + d*sinh(n*log(x)) + c) + sinh(d*cosh(n*log(x)) + d*sinh(n*log
(x)) + c)) - 6*(b*d*cosh((3*n - 1)*log(e))*cosh(n*log(x)) + b*d*cosh(n*log(x))*sinh((3*n - 1)*log(e)) + (b*d*c
osh((3*n - 1)*log(e)) + b*d*sinh((3*n - 1)*log(e)))*sinh(n*log(x)))*dilog(-cosh(d*cosh(n*log(x)) + d*sinh(n*lo
g(x)) + c) - sinh(d*cosh(n*log(x)) + d*sinh(n*log(x)) + c)) - 3*(b*d^2*cosh((3*n - 1)*log(e))*cosh(n*log(x))^2
 + b*d^2*cosh(n*log(x))^2*sinh((3*n - 1)*log(e)) + (b*d^2*cosh((3*n - 1)*log(e)) + b*d^2*sinh((3*n - 1)*log(e)
))*sinh(n*log(x))^2 + 2*(b*d^2*cosh((3*n - 1)*log(e))*cosh(n*log(x)) + b*d^2*cosh(n*log(x))*sinh((3*n - 1)*log
(e)))*sinh(n*log(x)))*log(cosh(d*cosh(n*log(x)) + d*sinh(n*log(x)) + c) + sinh(d*cosh(n*log(x)) + d*sinh(n*log
(x)) + c) + 1) + 3*(b*c^2*cosh((3*n - 1)*log(e)) + b*c^2*sinh((3*n - 1)*log(e)))*log(cosh(d*cosh(n*log(x)) + d
*sinh(n*log(x)) + c) + sinh(d*cosh(n*log(x)) + d*sinh(n*log(x)) + c) - 1) + 3*(b*d^2*cosh((3*n - 1)*log(e))*co
sh(n*log(x))^2 - b*c^2*cosh((3*n - 1)*log(e)) + (b*d^2*cosh((3*n - 1)*log(e)) + b*d^2*sinh((3*n - 1)*log(e)))*
sinh(n*log(x))^2 + (b*d^2*cosh(n*log(x))^2 - b*c^2)*sinh((3*n - 1)*log(e)) + 2*(b*d^2*cosh((3*n - 1)*log(e))*c
osh(n*log(x)) + b*d^2*cosh(n*log(x))*sinh((3*n - 1)*log(e)))*sinh(n*log(x)))*log(-cosh(d*cosh(n*log(x)) + d*si
nh(n*log(x)) + c) - sinh(d*cosh(n*log(x)) + d*sinh(n*log(x)) + c) + 1) - 6*(b*cosh((3*n - 1)*log(e)) + b*sinh(
(3*n - 1)*log(e)))*polylog(3, cosh(d*cosh(n*log(x)) + d*sinh(n*log(x)) + c) + sinh(d*cosh(n*log(x)) + d*sinh(n
*log(x)) + c)) + 6*(b*cosh((3*n - 1)*log(e)) + b*sinh((3*n - 1)*log(e)))*polylog(3, -cosh(d*cosh(n*log(x)) + d
*sinh(n*log(x)) + c) - sinh(d*cosh(n*log(x)) + d*sinh(n*log(x)) + c)) + 3*(a*d^3*cosh((3*n - 1)*log(e))*cosh(n
*log(x))^2 + a*d^3*cosh(n*log(x))^2*sinh((3*n - 1)*log(e)))*sinh(n*log(x)))/(d^3*n)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (e x\right )^{3 n - 1} \left (a + b \operatorname{csch}{\left (c + d x^{n} \right )}\right )\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)**(-1+3*n)*(a+b*csch(c+d*x**n)),x)

[Out]

Integral((e*x)**(3*n - 1)*(a + b*csch(c + d*x**n)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \operatorname{csch}\left (d x^{n} + c\right ) + a\right )} \left (e x\right )^{3 \, n - 1}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(-1+3*n)*(a+b*csch(c+d*x^n)),x, algorithm="giac")

[Out]

integrate((b*csch(d*x^n + c) + a)*(e*x)^(3*n - 1), x)